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ABSTRACT 

Following Laczkovich we consider the partially ordered set/31(R) of Baire 

class 1 functions endowed with the pointwise order, and investigate the 
order types of the linearly ordered subsets. Answering a question of 
Komjg~th and Kunen we show (in ZFC) tha t  special Aronszajn lines are 

embeddable into /31(]1~). We also show that  under Mart in 's  Axiom a 
linearly ordered set L with ILl < 2 ̀o is embeddable into 131(II~) iff L does 

not contain a copy of Wl or w~. We present a ZFC example of a linear 
order of size 2 ̀o showing that  this characterisation is not valid for orders 

of size continuum. 

These results are obtained using the notion of a compact-special tree; 

tha t  is, a tree tha t  is embeddable into the class of compact subsets of the 

reals partially ordered under reverse inclusion. We investigate how this 

notion is related to the well-known notion of an N-special tree and also 

to some other notions of specialness. 

* Par t i a l ly  s u p p o r t e d  by H u n g a r i a n  Scientific F o u n d a t i o n  g ran t  no. 37758, 49786 
a n d  F 43620. 

** T h e  second a u t h o r ' s  research for th i s  p a p e r  was par t ia l ly  s u p p o r t e d  by  N S E R C  

of Canada .  

Received Ju ly  28, 2004 

179 



180 M. ELEKES AND J. STEPRfi.NS Isr. J. Math. 

Introduction 

Definition 0.1: Given two partial orders (F, _<~,) and (]P', _<~,,) the order ]P will 

be said to e m b e d  into  ]P', denoted by IP r F', if there is a mapping ~: ]P ~ I?' 

such that  P0 <P pl implies ~(P0) <u,, ~(Pl). 

Note that  this ~ need not be one-to-one in general, but for a linear order L 

the relation L ~ ]P implies that  there is an order-isomorphic copy of L in F. As 

it is usual for trees, instead of/P r F' we will sometimes say that  ~ is ]P'-special. 

From now on we will often write F instead of (~, _<•) when there is no danger 

of confusion. 

B1 (~) is the class of Baire class 1 functions from ~ to ~; that  is, pointwise 

limits of sequences of continuous real functions. This class is partially ordered 

under the usual pointwise ordering; that  is, f < g iff f ( r )  <_ g(r) for every 

r E ~. Note that  f < g iff f _< g and f ( r )  ~ g(r) for some r E II~. The following 

problem was posed by Laczkovich. 

PROBLEM 0.2: Characterise those linear orders L for which L r ~1(~) holds. 

What  makes the Baire class 1 case particularly interesting is that  the cor- 

responding questions for all other Baire classes are solved. In the Baire class 

0, that  is, continuous case, it is easy to see that  L "-+/30(~) iff L r ]R, while 

for a > 2 Komjgth [6] showed that  even the question whether w2 '-+/3a(ll~) is 

independent of ZFC.  

Another motivation for Problem 0.2 may be that  at first sight it seems to be 

closely related to the well-known theory of Rosenthal compacta. However, no 

direct connection has been found yet. 

The earliest result concerning Problem 0.2 is a classical theorem of Kuratowski 

[8, 24.III.2'] stating that  wl ~ B1 (I10. Note that  a ~ ~ r B1 ([r for a < wl. 

For some related results see [3]. It is shown in [2] that, loosely speaking, starting 

from a class of simple linear orders, say the finite ones, and applying all sorts 

of countable operations one always obtains /~l(~)-embeddable linear orders. 

Therefore it is quite natural to guess that  Kuratowski's theorem is the only 

restriction; that  is, L ~-+ B,(]R) iff w~,w~ ~ L. (Here w~ is the reversed wl.) 

However, Komjs [6] gave a consistent counterexample by showing in Z F C  

that  if L is a Souslin line then L ~/+ BI(~). But this still leaves open the 

possibility that  the above answer to Laczkovich's problem is consistent with 

ZFC.  

QUESTION 0.3: IS it consistent that a linear order L r ~1 (~) lifO)l, w~ ~-~ L ? 

Komjs and Kunen independently asked the following natural question. 
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QUESTION 0.4: IS there an Aronszajn line A such that A r 131(~)? 

In this paper we answer Question 0.3 and Question 0.4. 

First we establish our basic tool in Section 1, then make some preparations 

in Section 2 by proving that  nine notions of specialness coincide for countably 

branching trees. Then we answer Question 0.4 in the positive in Section 3. More 

precisely, we show that  special Aronszajn lines are /31(R)-embeddable, hence 

there exists (in ZFC) a/~1 (E)-embeddable Aronszajn line, and consistently all 

Aronszajn lines are/~l (I~)-embeddable. We also show in this section that  under 

Martin's Axiom the characterisation in Question 0.3 is valid for linear orders of 

cardinality strictly less than the continuum. In Section 4 we answer Question 

0.3 in the negative (in ZFC). Finally, in Section 5 we formulate some open 

problems. 

The set-theoretic terminology followed in this paper can be found, e.g., in 

[4] and [7]. For an element t of a tree T denote succ(t) the set of immediate 

successors of t. We say that  a tree T is countably branching, if [ succ(t)[ _< w 

for every t �9 ~?. All trees in this paper are considered to be normal; that  is, for 

to,t1 �9 T the equation {t �9 T: t <T tO} = {t �9 T: t <T tl} implies to = tl.  The 

basic facts about Baire class 1 functions can be found, e.g., in [5] or [8]. An Fr 

set is a set that  is the union of countably many closed sets, a G6 set is a set 

that  is the intersection of countably many open sets. 

1. T h e  m a i n  l e m m a  

For a linear order L, we say that  $L is a (binary) partition tree of L (see [10]), 

if it is constructed as follows. Denote by T~ the O~ th level of a tree T: Elements 

of the partition tree will be nonempty intervals; that  is, convex subsets of L, 

and the ordering will be reverse inclusion. Set (TL)0 = {L}. Once (TL)a is 

given, split every I E (TL)~ of at least two elements into two disjoint nonempty 

intervals I + and I +, and put (TL)~+I = {I+: I �9 (TL)~, [I[ >_ 2,i �9 2}. We 

tacitly assume that  I + is the 'left' interval; that  is, for every 10 �9 I + and ll �9 I + 

we have lo _<L 11. For a limit put (~'L)a = {NB<alB: It~ �9 (~L)~,n~<jf~ r 0}. 

Denote by K:(I~) the set of compact subsets of ~ ordered under reverse inclu- 

sion. 

Definition 1.1: We say that  T ~ K(R) s t rong ly ,  if there exists an embedding 

which maps incomparable elements to disjoint sets; that  is, there exists an 

embedding ~: ~i" ~ h:(I~) such that  ~(to) N ~(t l)  = 0 for every t �9 ~i' and 

distinct to, tl �9 succ(t). 
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MAIN LEMMA 1.2: Let L be a linear order and qFL be a partition tree of L such 

that TL ~ 1C(~) strongly. Then L ~ B1 (1~). 

Proof: Let p: "/I'L --r/(;(I~) be a strong embedding. For every 1 E L define 

A t = U { q o ( I + ) : I  E TL,]II _> 2, l E I+}. 

We claim that r L ~ 131 (ll~) 

r  = XA' 

is the required embedding, where XH is the characteristic function of the set H.  

As XHo < X/h iff Ho C H1, we first have to show that for lo <L 11 the strict 
inclusion A t~ C_ A h holds. 

Fix lo <L 11. First we show A t~ C_ A h. Suppose 1 E (TL)a,llI _> 2 and 

lo E 1 + . We have to show that ~ ( I  +)  C A h. There is a first level where 

lo and 11 are not in the same element of TL; moreover, this is necessarily a 

successor level, say 10,11 E I* E (qrL)~*, l0 E (1") + and 11 E (I*) +. Clearly, 

9~((I*) +) _C A h . If ~ < c~* then lo E /1  + implies ll E I +, hence ~ ( I  +)  C A h . If 

c~ _> a* then I _C I*, hence ~ ( I  +)  G ~((I*)+) _C A h . 

Now we show A z~ r A h. By compactness, C = N{~(I) :  lo E I E TL} r r 
Using ~((I*)+) _C A h again, we obtain C _C A t,. We claim that C M A t~ = r 

In order to show this we have to check that Io E I + implies ~ ( I  +)  MC = 0. But 

this is clear, as C _C 9~(I +) and ~ is a strong embedding. 

What  remains to be shown is that  XA' E B1 (/R) for every l E L. A character- 

istic function XH is of Baire class 1 iff H is simultaneously Fr and G~, hence we 

have to check this for A t. It is well known (see [5, 22.27] or [8, 24.III.1]) that if 

for some ~ < 021 the nonincreasing transfinite sequences {F~}~<~ and {H~}~<r 

of closed subsets of I~ satisfy F~ D Ha for every a < ~ and Ha _D F3 for every 

a </3  < ~, then the set 

U(F  \Ho) 

is simultaneously F~ and Ga. 

Fix I E L. Let ~t be the ordinal for which {l} E (qI'L)r holds. As every strictly 

decreasing transfinite sequence of compact subsets of IR is countable, ~t < Wl. 

For a < ~t the unique interval I E ('2L)~ with l E I has at least two elements, 

so define 

F' o~+1 = H~+, = ~ ( I  +) U 

if 1 E I +,  and 
r~t+, = ~o(I +)  U ~(I+) ,  
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H~+, = ~o(I +) 

if I E I1 +. For a < (l limit, which includes the case a = 0, define 

/7: = H~ = V(I). 
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Clearly, F~ _D H~ for every a < f t and it is easy to see that F~ _~ F~ and 

H~ _D H~ for every a < /3  < f t. Using that F~ is monotone nonincreasing, in 

order to obtain that H~ _D F~ for every a </~ < f t it is sufficient to check that 

H~ _D F~+ 1 for every a < f t, which is straightforward. Therefore U , < u  (F~\H~) 
is F~ and G~. Using that our embedding qo is strong we obtain 

x= U 

so the proof is complete. | 

2. Var ious  no t ions  of  spec ia l  t r ee s  

In this section we prove that the relation TL r strongly can be translated 

to TL r IR. As specialness of trees is interesting in its own right, we prove that,  

at least for countably branching trees, this is also equivalent to specialness in 

certain other senses. Let C denote the Cantor set (not the complex plane!) 

with its inherited ordering as a subset of R. The Prikry-Silver partial order will 

be denoted by S - -  it consists of all partial functions f :  N --+ 2 = {0, 1} with 

co-infinite domain ordered under inclusion. 

Definition 2.1: We say that T ~ S s t rong ly ,  if there exists an embedding 

which maps incomparable elements to incompatible functions; that  is, there 

exists an embedding ~o: T -+ S such that for every t C T and distinct to,t1 E 
succ(t) there exists n 6 dom(~( t0) )ndom(~( t l ) )  such that ~(to)(n) • ~(tl)(n). 

THEOREM 2.2: Let T be a countably branching tree, e.g. a partition tree. Then 

the following are equivalent. 
(1) T is C-special (Cantor-special). 
(2) T is ~-special. 
(3) T is strongly S-embeddable. 
(4) T is strongly ]C(C)-embeddable. 
(5) T is ]C(C)-special. 
(6) T is strongly ]C(~)-embeddable. 
(7) T is IC(~)-special. 
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(8) ']I' is (P(N), C_)-special. 
(9) ~' is S-special. 

Proof: (1) =~ (2): This is immediate. 

(2) =~ (3): Let ~: 'lr -4 ~ be an embedding, and let {qn: n E N} enumerate Q. 

Set dom(r = {n E N: an < ~(t)} and define r {n E N: qn < ~(t)} -4 2 

by induction along '11" as follows. At limit nodes simply let r be the union 

of all r such that  s C t. Given that  r is defined, enmnerate succ(t) as 

{tk: k E N}, and by induction on k pick distinct nk E N such that  ~(t) < qn~ < 
~(tk). For n E N such that  an < ~(tk) set r = r if q~ < ~(t), 

r = 1, and r = 0 otherwise. It is easy to check that  r "]1" --+ $ is 

a strong embedding. 

(3) => (4): Let ~o: 'lI' -4 S be a strong embedding. Identify C with 2N; that  is, 

the set of functions from N to 2. For t E 'IF define r = {f  E 2N: ~(t) C_ f}.  

Then r ~I' -4 E(C) is a strong embedding. 

(4) => (5): Obvious. 

(5) :=> (1): Again, identify C with 2 N. Let {gn}n~176 enumerate all g: k -4 2 

where k E N and send K E ]C(C) to 

2 
E 3 n + l  " 
u E I~ 

~tlEKg,~ C_I 

(4) =~ (6): Obvious. 

(6) ~ (7): Obvious. 

(7) :=~ (2): Enumerate {(p,q): p,q E Q,p < q} as {(Pn,qn): n E N}, and send 

K C_ ~ to ~(p, ,q,)n~=~ 2 A~" 

(2) ~ (8): Enumerate Q as {qn: n E N}, and send r E I~ to {n E N :qn < r}. 
(8) ~ (9): Send H __ N to the function that  is constant 0 on {2n: n E H} 

and undefined elsewhere. 

(9) =v (2): Send f E • to - ~n~tdom(S) 1 .  I 

Remark 2.3: The assumption that  the tree ~l' is countably branching cannot be 

dropped, as if succ(t) has cardinality larger than the continuum for some t E ~r 

then T is clearly not strongly/C(C)-special but it can be ]l~-special. 

It is well-known that  even for countably branching trees Q-specialness is not 

equivalent to the properties listed in the above theorem. Indeed, one can show 

that  aQ (see the proof of Theorem 4.1 or [10]) is ll~-special, but not Q-special. 

It is also well-known that  for wl-trees (trees of height Wl with countable levels) 

it is independent of ZFC whether Ii~-specialness is equivalent to Q-specialness. 



Vol. 151, 2006 CHAINS OF BAIR.E CLASS 1 FUNCTIONS 185 

Indeed, for one direction it is enough that  under M A  all wl-trees with 

no uncountable branches are Q-special, which was shown, e.g., in [1]. The other 

direction was proved by Baumgartner (see, e.g., [9]), who constructed an 

R-special, non-Q-special Aronszajn tree under (}. 

3. Consequences for Bl-embeddability 

In this section we answer Question 0.4 and give an affirmative answer to 

Question 0.3 in the case ILl < 2 W. 

THEOREM 3.1: Let A be a special Aronszajn line; that is, for some partition 

tree ~A of A we have ~A ~-+ Q. Then A ~-~ B1 (]~). 

Proof: Clearly, "FA r l~, hence Theorem 2.2 yields ~'A ~ K:(~) strongly, 

therefore by the Main Lemnm 1.2 we obtain A ~ / 3 1  (~). | 

THEOREM 1.1: Assume Martin's Axiom. Then for a linear order L with 

IL[< 2 w the relation L ~+ BI(IR) holds iff wl,w~ ~ L. 

Proof: First suppose Wl ~ L or w~ r L. By the theorem of Kuratowski 

[8, 24.III.2'] every strictly monotone transfinite sequence in B1 (~) is countable, 

hence L ~-~ HI (I~). Now suppose wl, w~ ~ L. It follows that  there is no strictly 

decreasing sequence of subintervals of L of length wl, hence TL has at most Wl 

levels, where of course "IFL is a partition tree of L. Each level of this tree is a 

disjoint family of nonempty intervals of L, so ILl < 2 W implies I('FL)~I < 2 ~ for 

every a. By Martin's Axiom wl < 2 ~ and 2 ~ is regular, therefore I'IFLI < 2% 

Under Martin's Axiom every tree of cardinality less than 2 ~ with no branch of 

length wl is ~-special [1], hence ~L ~-~ Q, and we can repeat the previous proof. 
| 

4. Answer to Question 0.3 

Now we answer Question 0.3 in the negative, using some ideas from [10]. 

TttEOREM 4.1: There exists a linear order L such that Wl,(M~ ~ L but still 

L 

Proof: Define 

a/31(R) = {/: { < wl,l: ~ ~ BI(~) strictly increasing}. 
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This set becomes a tree if we partially order it by extension; that is, l0 _<T 11 iff 

10 C_ ll. 

LEMMA 4.2: (a/31(I~), _<V) ~ BI(II~). 

Prod: Suppose ~9: O'/31(]~ ) ---) /31(]1~) is an embedding. Then the transfinite 

recursion 
= 

produces a strictly increasing sequence of length b] 1 in/31 (]~), which is impossible 

by Kuratowski's theorem [8, 24.III.2']. 1 

This lemma shows that in order to finish the proof of Theorem 4.1 it is 

sufficient to construct a linear order ___L on a/31(ll~) extending _<v such that 

wl,w~ ~ (a/31(~), _<L). So fix an arbitrary bijection ~:/31(~) ~ It~ and define 

_<L to be the usual lexicographical ordering as follows. The functions/o: ~t0 __+ 

131 (~) and 11: ~tl ~ 01 (I~) are incomparable with respect to _<v iff there exists 

a < ~t0,~ll such that lo(a) ~ Ii(a).  In such a case choose the minimal such a 

and define lo <L 11 iff ~(lo(a)) < ~(ll(a)). 
Now we prove that Wl,W~ ~ (a/31(~),_<L). Suppose {/v}n<~ol is strictly 

monotonic. We prove by induction on ~ < Wl that there exists/*: Wl --~/31(~) 

such that  for every/~ < wl there exists ~Z such that for ~/> ~t~ 

Z, (Z) = r (~). 

Suppose this holds for every "7 < ~. If r/_> sup{~ :  ~/< ~} then I v I~t = l* II3, 

and hence (I,(lv(/~)) is monotonic in ~, and therefore is constant above some ~Z. 

As (I, is a bijection, lv(fl) is also constant for ~/_> 7/Z. Defining l*(/?) = lv~ (/~) 

finishes the induction. But once again, the existence of the strictly monotone 

sequence {/*(c~))~<~ contradicts Kuratowski's theorem. I 

5. O p e n  q u e s t i o n s  

The fundamental open problem is still of course Problem 0.2. However, we 

formulate here a couple of related questions. 

We mentioned in the Introduction that, starting from some simple linear or- 

ders, countable operations always result in/31 (I~)-embeddable orders. However, 

we do not know whether the class of O l(I~)-embeddable orders itself is closed 

under these operations. It is shown in [2] that the answer is affirmative for all 

these operations provided that it is affirmative for the simplest such operation, 
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namely, for the operation that  doubles the points of the order. That  is why we 

are particularly interested in the following. 

QUESTION 5.1: Suppose L ~ Bl(]l~), where L is a linear order. Does 

L x {0,1} ~ BI(II0, where the ordering of L x {0,1} is the usual 

lexicographical order? 

Denote A~ the class of subsets of ll~ that  are simultaneously F~ and G~. 

The ordering is reverse inclusion. Clearly, 

Q H 

and it can be shown that  the first two arrows cannot be reversed. How about 

the third one? 

QUESTION 5.2: BI( ) A0(S)? 

QUESTION 5.3: Suppose L ~ /31(~), where L is a linear order. Does 

L r A~ How about trees instead of linear orderings? 
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